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Abstract. We present a calculation of the neutrino-nucleon scattering cross-section which takes into ac-
count the nuclear correlations in the relativistic random phase approximation (RPA). Our approach is
based on a quantum-hadrodynamics model with exchange of σ, ω, π, ρ and δ mesons. In view of applica-
tions to neutrino transport in the final stages of supernova explosion and proto-neutron star cooling, we
study the evolution of the neutrino mean free path as a function of density, proton-neutron asymmetry
and temperature. Special attention was paid to the issues of renormalization of the Dirac sea, residual
interactions in the tensor channel, coupling to the delta-meson and meson mixing. In contrast with the
results of other authors, we find that the neutral-current process is not sensitive to the strength g′ of
the residual contact interaction. As a consequence, it is found that RPA corrections with respect to the
mean-field approximation amount to only 10% to 15% at high density.

PACS. 26.60.+c Nuclear matter aspects of neutron stars – 13.15.+g Neutrino interactions – 24.10.Jv
Relativistic models

1 Introduction

Neutrino transport is a key ingredient to understand the
mechanism of supernova explosion and the subsequent
cooling of the proto-neutron star formed in the collapse.
In the delayed explosion mechanism suggested by Wilson,
the problem of shock stall can be overcome if sufficient en-
ergy is deposited by the neutrinos to revive the shock. It is
seen in recent numerical simulations [1–6] of core collapse
that, besides other issues such as convection, the final out-
come of the explosion depends sensitively on the rate of
neutrino energy deposition.

The following stage of proto-neutron star cooling also
depends on the rate of neutrino transport. This determines
the shape of the neutrino signal emitted during the first
few seconds of the proto-neutron star formation. It has
also been suggested that the deleptonization could trig-
ger an instability as the star cools down, and lead to the
delayed formation of a black hole, in order to explain the
time interval observed between the 8th and 9th neutrino
detected in the explosion of the SN1987a supernova. It
is thus important to refine the models, since we now be-
gin to benefit from the observation of young-neutron-star
surface temperatures, and of the upgrading of neutrino
detectors such as SuperKamiokande, SNO or AMANDA
(see, e.g. [7]) to collect observational data from an even-
tual supernova explosion.
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An enhanced neutrino emission can occur at high
densities if the neutrino-nucleon cross-section is modified
through nuclear correlations, as was recognized in the
early works of Iwamoto and Pethick [8] and Sawyer [9].
The interest in this topic has recently been revived by
the feasibility of full Boltzmann simulations of neutrino
transport in collapsing supernovae [2–5].

While early calculations were only taking into account
the nucleon mass reduction in the medium, important
progress has been realized since then in order to include
Hartree-Fock [10], random phase approximation (RPA)
[11–17] or ladder [18–24] correlations. It is generally found
that the neutrino opacities are suppressed by medium ef-
fects, if however no collective modes are excited [16]. As a
matter of fact, the latter authors find a sizeable enhance-
ment due to the excitation of a spin zero-sound mode,
announcing a transition to a ferromagnetic state in a non-
relativistic treatment. Due to the degree of uncertainty
existing on the equation of state of neutron star matter
at high density, the existence of such a transition remains
an open question, although it seems unfavored in a rela-
tivistic treatment. Even if no such instability exists, it is
important to check the order of magnitude of the suppres-
sion factor to be applied to the scattering rate.

In order to asses the importance of some points raised
in previous calculations, we present in this paper a new
calculation of the neutrino-nucleon rate in dense, hot,
asymmetric matter. After a short presentation of the
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relativistic meson exchange model and relevant formulae
in sect. 2, we first perform a few calculations in a simplified
model where the background matter is approximated by
pure neutron matter. In particular, we examine the effect
of the Dirac sea and of various renormalization procedures
commonly used in the literature in order to subtract the
divergences in the vacuum fluctuation term. As a matter
of fact, calculations reported in [25] ascribed a sizeable
correction due to this effect. In contrast, we found here
only a minor effect on the size and position of the zero-
sound mode in the longitudinal component, which more-
over gets washed out by Landau damping and integration
over the exchanged momentum and energy. These results
are presented in sect. 3.

We also studied the way of introducing the short-
ranged residual interaction in the tensor channel, which
has to be taken into account in order to avoid the ap-
pearance of unobserved pion condensation at low density.
In the non-relativistic formalism, this is commonly done
by adding a Landau-Migdal contact interaction. In the
relativistic case, this has been done by various methods,
one being Horowitz’s ansatz in the pion propagator [12,
26]. The authors of [13], who are using this ansatz, re-
ported their results to be very sensitive to the choice of
the numerical value of the Landau-Migdal constant g′. In
the present work, we compare results obtained by this
method, to those obtained from a more transparent and
straightforward way of introducing this residual interac-
tion through a contact Lagrangian. In contrast with [13],
we obtain that the dependence of the neutral current pro-
cess on the value of g′ is extremely weak. We point out a
possible explanation for the discrepancy with the authors
previously quoted. We argue that the implementation of
Horowitz’s ansatz introduces additional unphysical con-
tributions, besides the desired corrections to the π and ρ
propagators. Once these spurious contributions are prop-
erly subtracted, the ansatz of Horowitz would then yield
exactly the same results as the contact term Lagrangian.
These results are presented in sect. 3.

In a second part of this paper, corresponding to sect. 4,
we study the full model where the background matter
is asymmetric. The proton fraction may be given as a
fixed value, or be determined by β equilibrium in the
two extreme situations of neutrino free matter Yν = 0, or
trapped neutrinos with a lepton fraction typical of super-
novae YL � 0.4. Here we consider with attention the phe-
nomenon of meson mixing, which has not been taken fully
into account in some previous treatments. Indeed, in ad-
dition to the usual σ-ω mixing, the neutron-proton asym-
metry also opens the possibility of σ-ρ and ω-ρ mixing in
the case of neutral current relevant for neutrino-nucleon
scattering. Finally, we consider here the contribution of
the δ-meson. This meson is usually left out, since the σ,
ω and ρ mesons are sufficient to describe the properties
of nuclear matter at the mean-field level. In asymmetric
matter, however, it can have a non-negligible contribution
and it mixes with the σ, ω and ρ mesons.

2 Neutrino-nucleon scattering in the
relativistic random phase approximation

2.1 Free scattering rate

Two related processes are needed in order to calculate the
mean free path and spectrum of neutrinos in matter. They
are the neutrino-nucleon scattering through the neutral
current

ν(K) + n(P ) → ν(K ′) + n(P ′) , (1)

and the absorption (or creation by the inverse process)
through the charged current

ν(K) + n(P ) → e−(K ′) + p(P ′) . (2)

In either case, the neutrino-nucleon cross-section may be
written as

dσ

dEνdΩ
=

G2
F

64π3

Eν′

Eν
Im(SµνLµν) . (3)

We will concentrate in this work on the neutral-current
process. Note that we do not include in this definition
the Pauli blocking factor for the outgoing lepton. It will
be taken into account in the final stage of the calcula-
tion, when we compute the mean free path of the neu-
trino in matter. In this formula, the tensor Lµν repre-
sents the lepton current, coupled with the weak vertex
Γα

We = γα(1 − γ5). For neutral-current scattering with
massless neutrinos, we have

Lαβ =Tr
[
(γ ·K)Γα

We(γ ·K ′)Γ β
We

]
=8

[
2KαKβ +(K ·q)gαβ

−(Kαqβ + qαKβ) ∓ iεαβµνKµqν

]
. (4)

K and K ′ are the four-momenta of the ingoing and
outgoing leptons. For neutral-current scattering we have
K2 = K ′2 = 0. The scattering angle is defined by
�K · �K ′ = EνE′

ν cos θ. Eν is the ingoing and Eν′ = Eν−ω is
the outgoing lepton energy. The energy loss ω is the zero
component of momentum exchange qµ = Kµ − K ′µ.

The structure function can be related to the imaginary
part of the retarded polarization

Sµν(q) =
∫

d4 xeiq·x 〈Jµ(x)Jν(0)〉 = (5)

−2
1 − e−z

ImΠµν
R (6)

and the differential cross-section takes the form

dσ

dEνdΩ
= − G2

F

32π3

Eν′

Eν

1
1 − e−z

Im(Πµν
R Lµν) . (7)

The factor (1 − e−z)−1 with z = β(ω − ∆µ) arises from
detailed balance. ∆µ is the difference between the chemi-
cal potential of the outgoing and ingoing nucleons. For the
neutral-current process, one has ∆µ = 0. For the charged-
current process, ∆µ = µ̂ = µn − µp. At the mean-field
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level, Παβ
R is the (retarded) polarization

ReΠαβ
R =ReΠαβ

11 , ImΠαβ
R =tanh

(
βω

2

)
ImΠαβ

11 ,

Παβ
11 = −i

∫
d4 p Tr

[
ΓαG11(p)Γ βG11(p + q)

]
, (8)

with Γα being the weak vertex of the hadronic current
Γα = γα(CV − CAγ5). For the neutral current, Cn

V =
−1/2, Cn

A = −gA/2 for the neutron and Cp
V = 1/2 −

2 sin2 θW, CA = gA/2 for the proton, with gA = 1.23 the
axial coupling constant and sin2 θW = 0.232 is the Wein-
berg angle. For the charged current we have CV = cos θc,
CA = gA cos θc, with cos θc = 0.95 the Cabibbo angle.
G11(p) is the nucleon propagator. At the mean-field level,
the nucleon behaves as a quasiparticle with effective mass
M , momentum P and chemical potential µ, and the propa-
gator can be written as the sum of a vacuum and a density-
dependent term (see, e.g. [27,28]):

G11(p) = (γ · P + M)
{

1
P 2 − M2 + iε

+ 2iπδ(P 2 − M2)

× [θ(p0)n(p0) + θ(−p0)n(p0)]
}

, (9)

with

n(p0) =
1

eβ(p0−µ) + 1
, n(p0) =

1
e−β(p0−µ) + 1

. (10)

2.2 RPA corrections

In the hot and dense medium through which the neutrino
is moving in the proto-neutron star, the nucleon is not
free, but is correlated with the other nucleons through
the strong interaction. Several effects contribute, among
which are:

– The fact that the nucleons can be described in the
medium as quasiparticles with effective masses and
chemical potentials. This represents the mean-field ap-
proximation. This correction has already been taken
into account in the preceding section in the definition
of the nucleon propagator.

– One can go a step further and include the exchange
term at the level of Hartree-Fock correlations. This is
the approach of, e.g., Fabbri and Matera [10]. We will
not consider this type of corrections here.

– Another consequence of the correlations is the broad-
ening of the nucleon width, corresponding to the
inclusion of ladder corrections [18–20,22]. This is
the equivalent for scattering to the Landau-Migdal-
Pomeranchuk effect studied in the case of neutrino
bremsstrahlung in [23,24,29].

– Finally, one has to take into account the RPA correla-
tions. This is the subject of the present work.

The strong interaction may be modelized by relativis-
tic σ, ω, π and ρ meson exchange. We will also include

the δ-meson in a later stage of this calculation (see sub-
sect. 4.1) in order to investigate some specific effects re-
lated to the fact that the matter in the proto-neutron star
has a sizeable proton-neutron asymmetry. We will work in
a relativistic formalism with an interaction Lagrangian of
the quantum-hadrodynamics type:

Lint = ψ

(
− gσσ + gωγµωµ − fπ

mπ
γ5γ

µ∂µ�π · �τ

−gδ
�δ · �τ + gργ

µ�ρµ · �τ +
fρ

2M
σµν∂ν�ρµ · �τ

)
ψ

−1
3
bmN (gσσ)3 − 1

4
c(gσσ)4 . (11)

The coupling of the pion is taken in the pseudovector form,
since this is known to reproduce better the phenomenol-
ogy of nucleon-pion scattering. It will be seen anyway,
at the end of the calculation, that in fact the pion does
not contribute directly to the neutral-current process. The
non-linear σ couplings σ3, σ4 are introduced in order to
obtain a better description of the equation of state with a
value of the incompressibility modulus and effective mass
at saturation density in agreement with the experimental
data.

RPA correlations can be introduced by substituting
the mean-field polarization in eq. (7) by the solution of
the Dyson equation

Π̃µν
WW =Πµν

WW +
∑

a,b=σ,ω,ρ,π...

Π
(a) µα
WS D

(ab)
SS αβΠ̃

(b) βν
SW , (12)

where the index W stands for a vertex with a weak cou-
pling and S for a vertex with a strong coupling. The tilde
Π̃ indicates a resummed polarization. DSS is the prop-
agator of the mesons a = σ, ω, ρ0, π0 for the neutral-
current process (we will see later that the pion does not
contribute) or a = ρ±, π± for the charged-current process.
The first term of the Dyson equation corresponds to the
mean-field approximation taken in the preceding section.

The Dyson equation can be rewritten as

Π̃µν
WW =Πµν

WW +
∑

a,b=σ,ω,ρ,π...

Π
(a) µα
WS D̃

(ab)
SS αβΠ

(b) βν
SW , (13)

which provides a solution in terms of the meson propaga-
tor D̃SS dressed in the RPA approximation.

2.3 Polarizations

Polarization insertions were calculated in the relativistic
random phase approximation. They are given by the loop
integral

ΠAB = −i

∫
d4p

(2π)4
Tr

[
ΓAG(p)ΓBG(p + q)

]
. (14)

G(p) is the nucleon propagator calculated in the Hartree
approximation, as given in eq. (9). The ΓA are the vertices
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of the interaction, which can be either of the weak type
ΓW = CV γµ + CAγ5γ

µ or of the strong type ΓS with S =
{σ, ω, ρ, π, δ}. Formulae are given for the polarizations
in, e.g., [12,30–33].

The polarizations can also be obtained by perform-
ing a linear response analysis on a Hartree ground state.
This was the method used in the following references, to
which the reader is referred for a full account of the cal-
culation techniques and meson dispersion relations. The
method was described in [34–40], with results given for
the π-meson in [34], for the σ, and ω mesons in [35,36]
and for the ρ in [37,38].

The linear response analysis provides us with a
set of coupled homogeneous equations in the form
Disp(q)φ1(q) = 0, where φ1(q) is a vector formed by the
components of the perturbations to the various meson
fields, and Disp(q) is a matrix whose determinant yields
the dispersion relation(s). The matrix of dressed meson
propagators D̃

(ab)
SS αβ , which appear in the second formula-

tion of the weak polarization RPA eq. (13), is then equal to
the inverse of this dispersion matrix. The necessary correc-
tions arising from the presence of the non-linear σ3 and σ4

couplings automatically appear during the derivation; it is
observed (see, e.g. eq. (26) of [40]) that they act as a mod-
ification to the σ-meson mass by a term 2bmσH + 3cσ2

H ,
where σH is the mean-field value of the sigma condensate.

The notation we are using here can be found in [39],
which also presents a discussion of some results concerning
the introduction of the contact term. Results concerning
asymmetric matter are presented in [40]. A new feature is
here the mixing between mesons of different isospin when
the distribution functions of the protons and neutrons dif-
fer. As a consequence, the Dyson equation (13) acquires
a more complex structure. The formulae needed for the
calculation of the mixed polarizations and meson propa-
gators are too long to be reproduced here; they were given
in [40].

The polarizations calculated in the linear response
analysis coincide with those available in the literature from
the Green function formalism at zero temperature and in
symmetric nuclear matter. At finite temperature, the real
parts coincide, but some precisions are necessary concern-
ing the imaginary parts. In the real-time formalism [28],
one defines the Green function and self-energies as 2 × 2
matrices, with the indices labeling the two branches of the
time contour. The various components are related to each
other. In this paper, we chose to work with the retarded
polarization.

Polarizations are generally obtained under the form of
a “density dependent” and a “vacuum fluctuation” term.
This latter part entails divergences which have to be sub-
tracted by some renormalization procedure. Regulariza-
tion of divergences occurring in the vacuum polarization
may be performed through the inclusion of a countert-
erm Lagrangian with couplings adjusted so as to cancel
the infinities. The subtraction is defined up to some resid-
ual finite constant, which is then determined by choos-
ing a renormalization point where the polarization and its

derivatives with respect to the momentum and effective
mass is required to vanish.

The criteria guiding this choice will have to be re-
examined in the light of the recent advances concerning
effective field theories. As a matter of fact, the various pos-
sible renormalization schemes unfortunately lead to dis-
crepancies observed among the results available in the lit-
erature. A particularly distressing example was the case
of the ρ-meson discussed in [38]. One cannot ignore the
problem, since simply eliminating the vacuum by a normal
reordering produces pathologies in the dispersion relation.
The problem roots in the fact that we are working with an
effective theory, which is non-renormalizable in the usual
QED sense. A renormalization can still be performed at
a given order. Nevertheless, the parameters of the theory,
which are adjusted so as to reproduce available experimen-
tal data, should enforce the symmetries and scalings of the
integrated degrees of freedom of the underlying more fun-
damental theory. There is some hope that one could solve
the problem using “naturalness” arguments [41]. Fortu-
nately, as we will see in sect. 3, our final result has only a
negligibly weak dependence in the choice of the renormal-
ization condition.

The polarization which enters in the definition of the
differential neutrino-nucleon scattering cross-section may
be decomposed onto orthogonal projectors, formed with
the vectors and tensor available in the problem, i.e. the
metric gµν = diag (1,−1,−1,−1), the hydrodynamic ve-
locity uµ and the transferred momentum qµ:

Π̃µν
WW =Π̃T Tµν +Π̃L Λµν +Π̃Q Qµν +i Π̃E Eµν , (15)

with

Λµν =
ηµην

η2
, ηµ = uµ − q · u

q2
qµ ,

Tµν = gµν − ηµην

η2
− qµqν

q2
,

Eµν = εµνρληρqλ ,

Qµν =
qµqν

q2
. (16)

The imaginary unit i appearing before the antisymmetric
tensor Eµν combines with the i present in the correspond-
ing term of the lepton current, so that the product involves
the imaginary part of the polarization ΠE . The following
properties might be useful:

TµαQ ν
α =TµαΛ ν

α =ΛµαQ ν
α =ΛµαE ν

α =EµαQ ν
α = 0 ,

ΛµαΛ ν
α =Λµν , QµαQ ν

α =Qµν , TµαT ν
α =Tµν ,

EµαT ν
α = Eµν , EµαE ν

α = q2η2Tµν . (17)

When calculating the polarization of the mesons with
formula (14), a zero-sound branch appears in the dis-
persion relation of the pion. Even though it is weaker
than in the non-relativistic formulation, it remains a spu-
rious effect, since no such effect is observed experimen-
tally. When analyzing the structure of the pion potential,
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it is seen that this is related to the short-range behav-
ior. The introduction of the short-range effects actually
should come out of a full many-body calculation. Never-
theless, it is a common practice to implement it by the in-
troduction of a residual interaction. In the non-relativistic
formalism, one adds the Landau-Migdal contact interac-
tion VC = g′(fπ/mπ)2δ(r)σ1 · σ2. In the relativistic case,
several ansätze have been suggested.

For example, Horowitz el al. [12,26] modify the free
pion propagator as follows:

1
q2 − m2

π

−→ G(0)µν
π =

qµqν

q2 − m2
π

− g′gµν (18)

and obtain the pion and rho propagators dressed at the
RPA level by inverting G−1 = G−1

0 − Π−1, i.e. explicitly,[
Gµν

ρ Gν
ρπ

Gµ
πρ Gµν

π

]−1

=

[
G

(0)µν
ρ 0

0 G
(0)µν
π

]−1

−
[

Πµν
ρ Πµν

ρπ

Πµν
πρ Πµν

π

]−1

. (19)

In these expressions, the polarizations Πµ
πρ and Πµν

π

are calculated with a pseudovector “pion” vertex
(fπ/mπ)γ5γ

µ. The true pion is obtained by projecting over
qµ.

In other words, when the dressed “pion” propagator
Gµν

π is decomposed with the help of the projectors (16)

Gµν
π = −Gπ LΛµν − Gπ T Tµν − Gπ QQµν

only the component Gπ Q is physically meaningful. The
Gπ L and Gπ T components, characteristic of a vector me-
son, are spurious, and should be removed carefully be-
fore proceeding onward with the calculation. As a mat-
ter of fact, it was obtained in [39] that these pieces would
strongly affect the propagation in the spacelike region, and
could even give spurious branches depending on the values
of the coupling and cutoff parameters. The same remark
applies to the mixed Gν

ρπ propagator which is also orthog-
onal to qµ and should be removed in later stages of the
calculation.

Another more conventional possibility is to add a con-
tact term to the Lagrangian

L � g′
(

fπ

mπ

)2 (
ψγ5γµψ

) (
ψγ5γ

µψ
)

. (20)

When the dispersion relations of the mesons are calcu-
lated using the method of linear response analysis on the
Hartree ground state, this leads to self-consistent equa-
tions for the pion and rho polarizations [39] whose solu-
tion is given by (21),(22). A detailed derivation of these
expressions can be found in [39].

Both alternatives modify the polarization of the (true)
pion and of the transverse mode of the ρ-meson as follows:

Ππ −→ q2Ππ

q2 − g′Ππ
, (21)

ΠρT −→ ΠρT − η2q2g′Π2
ρπ

1 + g′ΠπT
, (22)

with
ΠπT = −1

2
Πµν

π Tµν ,

and
η2q2Ππρ = −1

2
Πµν

πρ Eµν .

We wish to stress the fact that both ansätze lead to
analytically identical expressions for the dressed pion and
transverse rho propagators GπQ and Gρ T , so that re-
sults concerning, e.g., the Gamow-Teller resonance, or
the longitudinal-to-transverse spin-transfer ratio in (�p, �n)
scattering experiments, will not be affected by the way
the contact term was introduced. However, the first pro-
cedure presents the drawback of introducing additional
terms in the dispersion relation, related to the unphysical
components of the auxiliary “pion”. We feel that the sec-
ond procedure is more transparent. It can also easily be
extended to the case g′ρ �= g′π considered, e.g., in [42], by
introducing an additional piece to the contact Lagrangian.
Since, as will be seen in the next section, we obtain that
the neutral-current process is insensitive to the numerical
value of g′, we will not pursue this line here. On the other
hand, it can be expected that the charged-current reaction
will be sensitive to the strength of the residual interaction.
One might then need to enforce this distinction in order
to be consistent with the experimental data available so
far.

3 Preliminary study in pure neutron matter

The RPA correction to the mean-field value of the po-
larization entering the definition of the neutrino-nucleon
differential scattering cross-section is

∆Πµν
RPA =

(
Π

(σ)µ
WS Π

(ω)µα
WS Π

(ρ)µα
WS Π

(π)µ
WS

)

×


G(σ) Gσω

β 0 0

G
(ωσ)
α G

(ω)
αβ 0 0

0 0 G
(ρ)
αβ 0

0 0 0 G(π)




Π
(σ)ν

SW

Π
(ω)βν
SW

Π
(ρ)βν
SW

Π
(π)ν
SW

 =

∆ΠL
RPAΛµν+∆ΠT

RPATµν+∆ΠQ
RPAQµν+i∆ΠE

RPAEµν . (23)

By introducing the decomposition of the polarizations and
propagators onto the projection tensors (16), we obtain
(where we have dropped the “WS” index indicating that
the polarization loops connect a weak vertex with a strong
one)

∆ΠL
RPA = ΠσGσΠσ η2 + 2 ΠσGσωΠω L η2

−Πω LGω LΠω L − Πρ LGρ LΠρ L , (24)

∆ΠT
RPA = −Πω T Gω T Πω T + Πω EGω T Πω E η2q2

−Πρ T Gρ T Πρ T + Πρ EGρ T Πρ E η2q2 , (25)

∆ΠE
RPA = −2 Πω T Gω T Πω E − 2 Πρ T Gρ T Πρ E , (26)

∆ΠQ
RPA = −ΠπGπΠπ , (27)
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∆Πµν
RPA must now be contracted with the tensor of the

lepton current Lµν . Using the property

LµνQµν = 0 , (28)

we can see that the pion does not contribute to the
neutrino-nucleon scattering. The contact term g′ con-
tributes indirectly, by modifying the transverse rho prop-
agator GρT according to eq. (22). This dependence is nor
very strong, since the ρ-meson propagator was already
well-behaved in this zone.

In contrast, if the vector components of the auxiliary
pion were kept at this stage of the calculation, they would
contribute additional pieces to the transverse and longi-
tudinal polarizations

∆ΠL
RPA ← −Ππ LGπ LΠπ L ,

∆ΠT
RPA ← −Ππ T Gπ T Ππ T + Ππ EGπ T Ππ E η2q2

+2 Πρ T GπρΠπ E η2q2+2 Πρ EGπρΠπ T η2q2 ,

∆ΠE
RPA ← −2 Ππ T Gπ T Ππ E − 2 Ππ T GπρΠρ T

+2 Ππ EGπρΠρ E η2q2 .

The propagators Gπ L, Gπ T and Gπρ vanish when
g′ = 0. On the other hand, when g′ �= 0, we observed
from our numerical results, that the contribution of these
pieces would rapidly become dominant. According to the
discussion presented at the end of the previous section,
these terms are unphysical and should be removed.

It also appears reasonable that the dependence on the
contact term should remain weak, since these term was
introduced in order to correct the behavior of the pion,
whereas, according to (27) together with (28), the pion
does not contribute at lowest order.

3.1 Response functions

The contraction of the lepton current with the polarization
can be expressed by means of three structure functions
R1(q), R2(q) and R5(q) defined as follows [17]:

Sµν(q) =
∫

d4 xeiq.x 〈Jµ(x)Jν(0)〉 = R1(q)uµuν

+R2(q)(uµuν − gµν) + R3(q)qµqν

+R4(qµuν + qµuν) + iR5(q)εµναβηαqβ . (29)

Using the properties

L00 = 8Eν(Eν − ω)(cos θ + 1) ,

Lµνgµν = 16K · q = 16EνE′
ν(cos θ − 1) , (30)

LµνΛµν =
−q2

k2
L00 = − q2

k2
8EνE′

ν(cos θ + 1) , (31)

LµνTµν =8q2+
q2

k2
L00 =

q2

k2

[
8ω2+8EνE′

ν(3−cos θ)
]
, (32)

EµνLµν = 8q2(Eν + E′
ν) , (33)
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Fig. 1. Structure function R1, displaying overall RPA reduc-
tion and zero-sound enhancement.

we arrive at

−2
Im

(
LµνΠR

µν

)
1 − e−z

=4EνEν′ [R1(1+cos θ)+R2(3−cos θ)

−2(Eν + Eν′)R5(1 − cos θ)] . (34)

The structure functions are related to the previous polar-
izations Πµν = Πµν

MF + ∆Πµν
RPA = ΠL Λµν + ΠT Tµν +

ΠQ Qµν + iΠE Eµν by

R1 =
−2

1 − e−z
Im

[
− q2

q2
ΠL +

w2

q2
ΠT

]
, (35)

R2 =
2

1 − e−z
Im [ΠT ] , (36)

R5 =
2

1 − e−z
Im [ΠE ] . (37)

In the non-relativistic limit, R1 and R2 reduce to the den-
sity and spin density correlation functions, respectively.
The axial-vector structure function R5 appears only in a
relativistic treatment.

The “vector” structure function R1 involves the sigma-
meson and the longitudinal part of the omega-meson, as
well as the longitudinal part of the rho. The contribu-
tion of the latter meson is negligible in this channel. As is
known from previous studies, a zero-sound mode appears
in the mixed σ-ω dispersion relation. It manifests itself as
a pole in the RPA meson propagator. At finite tempera-
ture, it is quenched by Landau damping. As an example,
the longitudinal response function is represented in fig. 1
at twice the saturation density and a temperature T =
30 MeV for a fixed exchanged 3-momentum k = 100 MeV.
The longitudinal response function is suppressed in the
RPA approximation (full line) as compared to the mean-
field approximation (dashed line). The zero sound ap-
pears as a peak at the high-frequency edge of the dis-
tribution strength. Note, however, that this mode will lie
mostly outside of the integration range when we calculate
the mean free path. Indeed, the fact that the exchanged
momentum must be spacelike restricts the frequency to
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Fig. 2. Structure function R2, with two ways of implementing
the short-range correlations parametrized by Landau-Migdal
parameter g′. In the curve (HA), the auxiliary unphysical com-
ponents of the pion were kept. If these components are removed
by hand, the results of Horowitz’s ansatz would coincide with
those of the contact Lagrangian (CL).

ω2 < k2; moreover, the condition on the scattering angle
−1 < cos θ < 1 imposes that k2 < (2Eν − ω)2. The in-
tegration range is therefore restricted to k ∈ [0,∞[ and
ω ∈ [−k,min(k, 2Eν − k)] or, equivalently, ω ∈ [−∞, Eν ]
and k ∈ [|ω|, 2Eν − ω].

The RPA correction to the transverse polarization is
mostly determined by the ρ-meson, whereas the σ and ω
mesons contribution to this quantity remains small. An
example of the shape of the transverse structure function
is displayed in fig. 2 in the mean-field approximation (full
line) and with RPA corrections included (dashed line).
The results of fig. 2 were obtained for a density twice that
of saturation, a temperature 30 MeV and at a fixed value
of the 3-momentum 100 MeV.

We find that the dependence in the Landau-Migdal pa-
rameter g′ is very small, when it is introduced through a
contact Lagrangian (CL), in contrast with the results re-
ported in [13,17]. The dashed line representing our RPA
result is unchanged at the level of precision of the figure
whether we take g′ = 0.6 or g′ = 0. This discrepancy
probably has to be traced to the fact that the latter ref-
erences are using Horowitz’s ansatz (HA). Indeed, when
the π-ρ mixing and the components of the Gµν

π tensor or-
thogonal to qµ, generated by the inversion of eq. (19), are
kept in the equations, we would obtain the dotted line of
fig. 2 represented for g′ = 0.6. These terms actually would
dominate over the other contributions from the ρ-meson,
and would be responsible for a strong suppression of the
transverse response function. They are proportional to g′.
As was argued in the preceding section and in [39] how-
ever, these contributions are spurious and should be sub-
tracted. Once these components are removed, the results
of Horowitz’s ansatz coincide exactly with those of the
contact Lagrangian (CL). We believe that this point needs
to be investigated further.
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Fig. 3. Structure function R5, displaying a shift towards lower
frequencies.

The strong g′-dependence of the transverse response
observed by the authors of [13,17] was also at the origin
of the large reduction factors with respect to the mean-
field results obtained in the RPA approximation in these
references. A further consequence of our results is there-
fore that we expect only a moderate modification of the
RPA results with respect to the mean field.

We believe that it makes sense that the introduction of
a residual interaction to correct the behavior of the pion
propagator, should not dramatically affect the final result,
since it was seen from (27),(28) that the pion itself does
not contribute to neutrino-nucleon scattering at this level.

Figure 3 shows the structure function R5 for the same
conditions of temperature, density and exchanged mo-
mentum as in the two previous figures. The RPA cor-
relations shift this response function towards lower fre-
quencies. Whereas the longitudinal response R1 was sup-
pressed, this contribution is enhanced. If the unphysical
components of the pion propagator were kept, one would
again obtain a strong g′-dependence; nevertheless, when
they are removed or when the calculation is performed us-
ing the contact Lagrangian ansatz, the dependence of the
result on g′ is so small that it is not apparent on the scale
of the figure.

As discussed in the previous section, the polarizations
entering the definition of the dressed meson propagators
in the RPA approximation contain a contribution from
the vacuum fluctuations which needs to be renormalized.
At the present time, there exist some discrepancies in the
literature concerning the choice of a renormalization pro-
cedure. As discussed, e.g., in [38,39], this is a source of
uncertainty in the determination of the dispersion rela-
tions of the mesons in the framework of hadronic mod-
els, and in particular in the prediction of the behavior of
the effective ρ-meson mass in the medium. We refer the
reader to [38–40,43,44] for details. Before we proceed, it
is necessary to know in what measure does this issue af-
fect the results presented in this work. Accordingly, we
calculated the response functions in three cases. A first
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case consists in simply dropping the vacuum term (which
is equivalent to perform a normal ordering). In the second
case, (“scheme A” in this work) we chose a renormalization
scheme as used by Kurasawa and Suzuki [43], which min-
imizes the coupling to counterterms on the q2 = 0 shell.
In the third case, we used a renormalization procedure
which preserved the formal structure of the expressions
of the vacuum polarizations as a function of the effective
nucleon mass (“scheme 3” of [38]; we will refer to it as
“scheme B” in this work).

The choice of the renormalization procedure has some
small influence on the longitudinal R1 response function.
As seen from fig. 4, its main effect is to modify the strength
and position of the zero-sound mode. It was argued above,
however, that the contribution of the zero sound mode to
the neutrino-nucleon scattering is only marginal, since its
characteristic frequency lies mostly outside of the kine-
matically allowed values for neutrino-nucleon scattering.
Moreover, as will be seen in the next subsection, the longi-
tudinal response is not the dominant contribution to the
neutrino-nucleon scattering. The structure functions R2

and R5 are not appreciably affected by the choice of the
renormalization scheme. The difference between one or the
other schemes are of the order of the fraction of a percent
and therefore not distinguishable on the scale of the fig-
ures. As a consequence, we are able to conclude that the
vacuum fluctuations will not affect the neutrino-nucleon
scattering opacity in any appreciable way.

3.2 Differential cross-section

The differential cross-section can now be calculated from
eq. (7) by inserting the previous results for the longitu-
dinal, transverse and axial-vector polarizations. It is in-
structive to compare the relative magnitude of their con-
tributions, which are displayed in fig. 5. The result is
rescaled by dividing it by the textbook estimate σ0 =
G2

F

(
C2

V + 3C2
A

)
E2

ν/π [45]. The transverse contribution is
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dominant and will provide for about 60% of the total re-
sult. We find that it is very little modified by RPA corre-
lations. The corrections arise from the subdominant lon-
gitudinal and axial-vector polarizations ΠL and ΠE . The
longitudinal contribution is affected by a reduction factor
of about two. We notice at the right and left ends of the fig-
ure two small peaks which arise from the zero-sound mode
excitation. The contribution of the axial-vector response
function is only marginal at the density (nB = 2 nsat) cho-
sen in this figure, although it is larger at higher density. It
is slightly enhanced by RPA correlations and its strength
is shifted towards lower values of the energy loss of the
neutrino ω = Eν − E′

ν , thus acting to counterbalance the
reduction from the longitudinal contribution.

As a conclusion to this preliminary study, we gather
here the main results of the section. We are able to report
that the choice of renormalization scheme does not affect
the results more than on the level of less than 1 %. A sec-
ond important point is that our results are also insensitive
to the strength of the residual contact (Landau-Migdal)
interaction, in contrast to the findings of other authors.
As a consequence, the transverse response function is left
almost unchanged by RPA correlations, while the longi-
tudinal and axial-vector responses are reduced by about
a factor of two. Since the transverse structure function
yields the dominant contribution to the neutrino-nucleon
scattering, we do not expect dramatic modifications from
RPA correlations as compared to the mean-field result.

4 Full model —asymmetric nuclear matter

Up to now, we have made the simplifying assumption of
pure neutron matter. We now pass to describe a more
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realistic model, where the proton fraction is defined by
the physical conditions in the star. The proton fraction is
defined by

Yp =
ρp

ρp + ρn
, (38)

where ρp and ρn are the proton and neutron densities. Nu-
merical calculations show that the chemical equilibrium is
reached very rapidly. The proton fraction will therefore
be determined by β equilibrium. As a rule of thumb, in
cooled neutron stars, the neutrinos can leave the star un-
hindered, and we have Yp � 0.1. On the other hand, in
supernovae the neutrinos are still trapped dynamically in-
side the matter on the diffusion time scale, and contribute
to displace the equilibrium to higher ratios of the proton
fraction Yp � 0.3.

The asymmetry enters at several levels in the calcu-
lation of the neutrino-nucleon scattering cross-section. It
first enters in the determination of the thermodynamics:
we have kFp �= kFn, and also Mp �= Mn in a model with δ
meson exchange. It also enters in the polarizations, e.g we
must sum the proton and neutron contributions in polar-
izations such Πσ = Π

(nn)
σ + Π

(pp)
σ . Moreover, new mixing

channels occur which are not present in symmetric mat-
ter. They arise from polarizations involving vertices with
mesons of different isospin, which are given by the differ-
ence between the proton and neutron contributions, such
as, e.g., Πσρ = Π

(pp)
σρ − Π

(nn)
σρ in longitudinal modes or

Πωρ = Π
(pp)
ωρ − Π

(nn)
ωρ in transverse modes.

4.1 Thermodynamics

The basic properties of nuclear matter can be reproduced
at the mean-field level with σ, ω and ρ meson exchange,
when non-linear sigma-meson couplings 1/3bmσ3+1/4cσ4

are taken into account in order to obtain a better value of
the compressibility (see, e.g. [46]).

The δ-meson also appears in meson exchange models
such as the Bonn potential [47,48]. Since the δ-meson car-
ries isospin, it can give important contributions in strongly
asymmetric matter. Moreover, when density-dependent
mean-field models are adjusted in order to reproduce the
most recent Dirac-Brueckner-Hartree-Fock calculations, it
is seen that a δ-meson is needed in order to reproduce the
results at finite asymmetry [49,50]. The behavior of the
equation of state when a δ-meson is present was studied
by Kubis and Kutschera [51]. The δ-meson is at the ori-
gin of a difference between the neutron and the proton
effective masses:

Mn = m − gσσ + gδδ , Mp = m − gσσ − gδδ . (39)

On the other hand, it brings a negative contribution to the
asymmetry energy, so that the coupling to the ρ-meson has
to be readjusted to a higher value to compensate for this
effect.

In this work, unless stated otherwise, the strength of
the δ coupling gδ will be fixed to the Bonn potential value

[47] g2
δ/4π = 1.1075. The couplings gσ, gω, gρ, b, c were

adjusted [40] so as to reproduce the experimental satura-
tion point with

ρ0 = 0.17 fm−3, B/A = −16 MeV, K = 250 MeV,

m∗/m = 0.8, aA = 30 MeV (40)

and take the values

gσ = 8.00, gω = 7.667, b = 9.637 10−3,

c = 7.847 10−3, gρ = 4.59 . (41)

The ratio κρ = fρ/gρ was fixed to the Bonn value κρ = 6.1.
The proton fraction is determined by the β equilibrium

condition µ̂ = µn −µp = µe −µν . If neutrinos are trapped
inside matter, the chemical potential of the neutrino has
a finite value µν = (6π2ρYν)1/3. For a typical value of the
lepton fraction YL = Yν + Ye = 0.4, µν is of the order of
200–250 MeV and the proton fraction Yp of the order of
∼ 0.3–0.36. YL is determined by neutrino transport (e.g.,
diffusion equation), to which the neutrino-nucleon cross-
section serves as input. If the matter is transparent to
neutrinos, µν = 0 and the proton fraction is of the order
of ∼ 0.1. The following figure (fig. 6) show the behavior of
thermodynamical parameters relevant for the calculation
of the neutrino opacities.

The neutron star matter is assumed to be in β equilib-
rium. The two cases of neutrino free matter (Yν = 0) or
matter with trapped neutrinos (YL = 0.4) are displayed.
All figures were drawn assuming a vanishing temperature.
The upper left panel shows the evolution of the proton
fraction as a function of the baryon density. The upper
right panel shows the behavior of the proton and neu-
tron effective masses. The difference Mp −Mn is larger in
neutrino free matter since it allows for a smaller proton
fraction and therefore a larger mean δ field. On the lower
panel are represented the difference between the chemical
potentials of the neutron and the proton µ̂ in the cases
Yν = 0 and YL = 0.4 as a full line. In matter with a
trapped lepton fraction YL = 0.4, the neutrino chemical
potential is non-vanishing; it is compared to µ̂ in fig. 6(c).
The full line was obtained for a coupling to the δ field
gδ = 5. If this coupling is set to zero, the chemical poten-
tials are given by the dashed lines in fig. 6(c).

4.2 Meson mixing

The dispersion relations of the σ-ω-δ0-ρ0 system of neu-
tral mesons, which is the relevant one for the calculation
of the neutrino-nucleon scattering through the neutral-
current process, were studied in [40]. As discussed in this
reference, the difference existing between the neutron and
proton distribution functions makes mixing possible in all
channels in asymmetric matter. The pion does not mix
with the other mesons and, as pointed out in sect. 3, its
contribution to the ν-N scattering process vanishes, so we
will not consider it further. The RPA correction is now
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obtained from

∆ΠRPA =
(
Π

(σ)µ
WS Π

(ω)µα
WS Π

(δ)µ
WS Π

(ρ)µα
WS

)

×


Gσ Gσω

β Gσδ Gσρ
β

Gωσ
α Gωω

αβ Gωδ
α Gωρ

αβ

Gδσ Gδω
β Gδδ Gδρ

β

Gρσ
α Gρω

αβ Gρδ
α Gρρ

αβ

 ×


Π

(σ)ν
SW

Π
(ω)βν
SW

Π
(δ)ν
SW

Π
(ρ)βν
SW

 . (42)

Explicit expressions for the dressed meson propagator ma-
trix were given in [40]. The calculation proceeds as in
sect. 3. The longitudinal projection of the RPA correction
to the polarization now receives contributions from the
δ-meson and from all possible combinations of the mix-
ings, that is, not only from σ-ω and δ-ρ already present
in symmetric matter, but also from δ-σ, σ-ρ, ω-ρ and ω-
δ mixings. The transversal T and axial-vector E compo-
nents receive additional contributions from ω-ρ mixing. Fi-
nally, the projection parallel to qµqν , which would contain
the contribution of the pion, vanishes through contraction
with the (massless) lepton current.

The expressions of Im (ΠR
µνLµν) so obtained are in-

troduced in the formula for the differential cross-section
(7). We calculated separately the longitudinal, transverse
and axial-vector contributions to the differential cross-
section, and represent them in fig. 7 as a function of the
ratio of the neutrino loss energy to the transferred three-
momentum k = 50 MeV. The thermodynamical condi-
tions were chosen to be those of neutrino free matter
(Yν = 0) with a density n = 4nsat and finite temperature
T = 20 MeV. The transferred 4-momentum is subject
to kinematical constraints which restrict the range over
which it will be integrated in order to obtain the total
cross-section and the mean free path (see next section).
The limit of the integration range is also represented in
fig. 7.

The results of the mean-field approximation are rep-
resented by the solid line and those of the RPA with full
mixing, as described by eq. (42), are represented by the
dotted line. In order to illustrate the effect of the meson
mixing, we have plotted for comparison the result which
would correspond to taking into account the mixing only
in the channels that are already open in symmetric mat-
ter (i.e., σ-ω and δ-ρ), and setting the other mixings to
zero (i.e., σ-ρ, δ-ω, ω-ρ and σ-δ), as has been considered
by some authors. This approximation is represented by
the dashed line. It can be seen from these figures that the
contribution of the longitudinal polarization is apprecia-
bly affected by meson mixing.

The longitudinal modes involve the full σ-ω-δ-ρ mix-
ing. The mixing is stronger at high asymmetry and high
density. There exists as before a zero-sound mode, but it is
indiscernible on the figures, because it is partially washed
out by Landau damping and lies outside of the integration
range.

The transverse and axial-vector contributions involve
only ρ-ω mixing in the transverse modes. The modifica-
tion of the transverse contribution is small in the kinemat-
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Fig. 7. Contribution of longitudinal (upper panel), transverse
(central panel) and axial-vector (lower panel) polarizations to
the differential scattering cross-section, showing the correction
arising from fully taking into account meson mixing.

ically allowed region. On the other hand, the axial-vector
response function is somewhat enhanced by ρ-ω mixing.

The conclusions that were already presented from the
preliminary study are confirmed in this more elaborate
model. We obtain that the dominant contribution to
the neutrino-nucleon scattering cross-section, that is the
transverse one, is hardly modified by the RPA corrections
as compared to the mean-field approximation. The RPA
corrections affect the longitudinal and axial-vector com-
ponents, the longitudinal part being suppressed and the

axial part enhanced with respect to the mean-field approx-
imation, and partially canceling each other. The effect of
meson mixing is of the order of 20% on both the longitudi-
nal and axial-vector parts, but further act to counterbal-
ance each other. The net result is that we do not expect
dramatic corrections to the global result from RPA corre-
lations.

4.3 Mean free path

Finally, we will calculate the contribution of the neutrino-
nucleon scattering to the mean free path, since it gives an
immediate feeling of the phenomenon of opacity when it is
compared with the length scales typical of the star, e.g. the
star radius or a typical convection length scale. We must
of course stress the fact that this is only an estimate. As a
matter a fact, several other processes, like neutrino emis-
sion and absorption through charged-current, scattering
on electrons, bremsstrahlung... contribute to the defini-
tion of the actual mean free path.

The mean free path is defined here as the inverse of the
total cross-section per unit volume obtained by integrating
the differential cross-section calculated in the preceding
sections:

1
λ(Eν)

= − G2
F

32π2

1
E2

ν

∫ ∞

0

kdk

×
∫ ωmax

−k

dω
(1 − f(E′

ν))
1 − e−z

Im
(
LαβΠR

αβ

)
, (43)

with
ωmax = min(2Eν − k, k) .

(1 − f(E′
ν) = (1 + exp[(E′

ν − µν)/T ])) is a Pauli blocking
factor for the outgoing lepton. The chemical potential µν

is determined by β equilibrium and by neutrino transport
equations (e.g., diffusion equation), which determine the
lepton fraction YL at a given instant of the proto-neutron
star cooling.

In the following figure (fig. 8), we represented the ra-
tio of total cross-sections as calculated in the RPA and
mean-field approximations. The chosen thermodynamical
conditions are representative of the earlier stage of the
cooling, when the neutrinos are still trapped inside the
matter (the lepton fraction was chosen to be YL = 0.4,
for typical values of the temperature (T = 20 MeV) and
density (n = 4nsat). The neutrino energy was fixed to
Eν = 30 MeV.

At high density, the total neutrino-neutron scattering
cross-section is found to be reduced by RPA correlations
by a factor (only) ∼ 10% with respect to the mean-field
value. When full meson mixing is taken into account, the
reduction is even smaller. This value should be compared
to the suppression factors of the order of two quoted in
recent publications [13,17]. We think that the explanation
for this discrepancy probably lies in the treatment of the
short-range correlations, as discussed in sect. 3. Further
investigation on this issue is needed.
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The mean free path obtained from the integration of
eq. (43) is shown in fig. 9 in matter with trapped neutri-
nos as a function of the density for various values of the
temperature. At high density, the mean free path is some-
what lengthened by RPA correlations as compared to the
mean-field value. At low density and moderate tempera-
ture, on the other hand, RPA correlations would yield an
enhancement of the cross-section and a reduction of the
mean free path. A similar behavior was reported in [17].
It should be kept in mind, however, that the validity of
the model becomes questionable in this range.

4.4 Influence of the δ-meson

In this subsection we briefly come back on the role of the
δ-meson on the results presented in this work.

The δ-meson affects the neutrino-nucleon cross-section
at two levels. First, it introduces a difference between the
effective masses of the neutron and the proton. Further-
more, it contributes additional terms to the longitudinal
RPA polarization, which are formally similar to those aris-
ing from the σ-meson. No additional terms appear in the
transverse and axial-vector polarizations.

We studied this contribution by comparing the case
where the coupling to the δ-meson is taken to vanish, to
the case gδ = 5. The couplings to the σ and ω fields are
given by (41), whereas the coupling to the ρ-meson must
be readjusted as follows:

(gδ = 0.0, gρ = 3.685) , (gδ = 5.0, gρ = 5.203) . (44)

(Note that the readjustment of gρ necessary to reproduce
the asymmetry energy will also indirectly modify the re-
sponse functions though the polarizations involving the
ρ-meson.)

The behavior of the longitudinal, transverse and axial-
vector contributions to the differential cross-section are
represented in fig. 10 for these two parameter sets. The
thermodynamical conditions were taken to be those of
matter in β equilibrium with trapped neutrinos at four
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Fig. 9. Mean free path in matter with trapped neutrinos.

times the saturation density and T = 30 MeV. The en-
ergy of the ingoing neutrino and the transferred momen-
tum were fixed to Eν = 30 MeV and k = 100 MeV. In
order to estimate the respective influence of both effects,
the artificial case where the mass difference is taken into
account, but not the contributions of the δ polarizations,
is also represented as a dash-dotted line in the first panel.
The coupling to the δ enhances the longitudinal response
with respect to the case gδ = 0, whereas it suppresses
the transverse response. The axial-vector response was left
practically unchanged. Again, subtle cancellations effects
come into play, and prevent us from issuing predictions on
the behavior of the total cross-section as a function of gδ

at this stage.
We obtained that the total cross-section, in the condi-

tions of hot and dense matter with trapped neutrinos, was
less suppressed with respect to the mean-field value when
the coupling to the δ is finite. On the other hand, we re-
alized a calculation for colder (T = 5 MeV) and neutrino-
free matter, and found in this case the total cross-section
to be slightly larger when gδ = 0 than when gδ = 5.

5 Summary and perspectives

Let us gather here the main results obtained in this work.
Special attention was paid to the issues of renormaliza-
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Fig. 10. Influence of the δ-meson on the differential cross-
section.

tion of the Dirac sea, residual interactions in the tensor
channel, coupling to the δ meson and meson mixing. It
has been shown that the vacuum fluctuations have only
a negligible effect on the scattering rate. We examined
two different prescriptions to modelize short-range corre-
lations, via a Landau-Migdal contact term in the tensor
channel. We argue that, when this term is properly han-
dled, it has very little influence on the structure functions,
regardless of the value of the parameter g′.

As a consequence, the transverse contribution to the
scattering rate is basically unchanged, while the contribu-
tions coming from the longitudinal and axial-vector parts
combine to produce a 10% to 15% reduction of the scat-
tering rate with respect to the mean field approximation.

These results stay in contrast with the findings of pre-
vious authors [13,17], who reported a strong dependence
on the strength of the residual interaction. We suggest
that the discrepancy originates in the treatment of the
ansatz of Horowitz with which this term is usually intro-
duced in the theory, and suggest an alternative ansatz.
We believe our result to be consistent with the fact that
the unmodified pion does not contribute to the neutral-
current process, so that the g′ interaction introduced to
correct the behavior of the pion propagator should also not
drastically affect the final result. Further work is needed
to settle this point.

Let us mention at this point that our statement is
made for the neutral-current process. We do not expect
it to hold for the charged-current processes.

The 10% reduction factor from RPA correlations
comes in addition to the reduction effected at the mean-
field level by the replacement of the mass and chemical po-
tential of the nucleons by their corresponding effective val-
ues in dense matter. The latter reduction depends appre-
ciably on the chosen parameter set, since it regulates the
rate of decrease of the effective nucleon mass. We found
for example for the set (41) σMF(M,µ∗)/σ(m,µ) = 0.75
in neutrino-free matter at n = 4nsat, T = 5MeV, Eν =
30MeV.

A natural extension of this work concerns the absorp-
tion and emission cross-section by the charged-current re-
action in the RPA approximation. This is presently under
study.

As the density increases, a more complete description
should include the hyperons Λ, Σ−. Taking into account
these baryons does not present any particular difficulty,
since the structure of the equations is the same, only with
different values of the coupling constants. This has been
done in [33,52]. As these authors argue moreover, the high
fraction of trapped neutrinos and relatively hot temper-
atures both conspire to strongly suppress the formation
of exotic, strangeness-carrying particles, so that these are
not expected to have a strong influence on the first few
seconds of the life of the proto-neutron star. Neverthe-
less, the exotica will be determinant on the later stage of
the proto-neutron star cooling, at t � 30–60 s, which are
marginally or will soon become observable with the next
generation of neutrino detectors now on construction, such
as UNO.

A more important problem is to arrive to an accurate
description of the short-range correlations. These have
been studied separately from RPA corrections by several
authors (see, e.g. [19,20,23,24]). The calculated correc-
tion factors to the neutrino opacities are large, especially
in the low density regime. This is in fact related to the
well-known problem of nuclear matter descriptions, which
should simultaneously take into account short- and long-
range corrections, “ladders” and “loops”, in a consistent
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way. While methods do exist to do so [53], at least in an
approximate way, they are quite unwieldy, especially in
the relativistic formulation. Some results in this direction
have been reported recently in [23].

In matter at subnuclear density, and also at high den-
sity, the homogeneous phase may not be the most stable
state of matter. It will therefore be important to study
the role of ordered configurations, as coherent scattering
is expected to dominate in this regime. At low density,
and sufficiently low temperatures, the spinodal instabil-
ity triggers condensation of droplets of a denser phase
in a more dilute gas principally composed of neutrons.
The droplets take a spatially ordered configuration due
to Coulomb forces. This will eventually form the crust of
the cooled neutron star. At high density, there are various
possibilities of forming ordered structures. For example,
if a transition to quark gluon plasma takes place, an im-
portant fraction of the matter in the star can be in a
mixed phase, and will acquire an ordered structure sim-
ilar to that present in the crust [46]. Another possibility
is the formation of a pion condensate in the alternating
spin layer configuration [54]. In any case, such structures
are generally unfavored by temperature and high lepton
(and proton) fractions, so that the same remark as done
before applies: this type of correction is expected to set
in at a later phase of the proto-neutron star cooling. It
could be very interesting once we are able to detect the
tail of the neutrino emission from a supernova event; if a
sudden change in the neutrino would occur, it could be
interpreted as a signal that a phase transition has taken
place.
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